
The Megalomicins. Part V.¹ Mass Spectral Studies

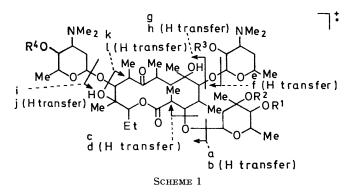
By Robert S. Jaret, Alan K. Mallams,* and H. Frederick Vernay, Natural Products Research Department, Schering Corporation, Bloomfield, New Jersey 07003, U.S.A.

The mass spectral fragmentation patterns of the megalomicins, a new group of macrolide antibiotics elaborated by Micromonospora megalomicea sp. n., are described. The mass spectra of the 9-hydroxy-analogues, the megalalosamines, the erythralosamines, and erythromycin A are also discussed.

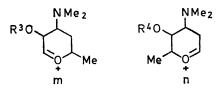
MASS SPECTROMETRY has been successfully used in the elucidation of the structures of a number of polyene antifungal antibiotics such as the amphotericins,² nystatin,³ the mycoticins,⁴ and the flavofungins,⁵ and also for the macrolides neutramycin,⁶ cirramycin A₁,⁷ pikromycin,⁸ kromycin,⁸ and, to a lesser extent, the spiramycins,^{9,10}

the magnamycins,^{9,10} and the leucomycins.¹¹ We describe here our observations on the fragmentation

- ¹ Part IV, R. S. Jaret, A. K. Mallams, and H. Reimann,
- preceding paper. ² A. C. Cope, U. Axen, E. P. Burrows, and J. Weinlich, J. Amer. Chem. Soc., 1966, 88, 4228.
- ³ M. Ikeda, M. Suzuki, and C. Djerassi, Tetrahedron Letters, 1967, 3745.


⁴ H. H. Wasserman, J. E. van Verth, D. J. McCaustland, I. J. Borowitz, and B. Kamber, *J. Amer. Chem. Soc.*, 1967, **89**, 1536. ⁵ R. Bognar, B. O. Brown, W. J. S. Lockley, S. Makleit, T. P.

- Toube, B. C. L. Weedon, and K. Zsupan, Tetrahedron Letters, 1970, 471.
- ⁶ L. A. Mitscher and M. P. Kunstmann, Experientia, 1968, 25, 12.


patterns of the megalomicins,^{1,12-14} a new group of macrolide antibiotics elaborated by Micromonospora megalomicea sp. n.

Extensive use of mass spectrometry was made during the elucidation of the structures of megalomicins A(1), B (2), C_1 (3), and C_2 (4). The principal fragmentations of these antibiotics, together with a number of selected acyl derivatives, are given in Table 1. In the case of megalomic A(1), the compositions of the molecular ion and many of the major fragment ions were checked by high resolution measurements (Table 2).

In general the megalomicins exhibited the expected cleavages at the glycosidic linkages of the three sugar residues (Scheme 1). The glycosidic cleavages e-l of the desosamine and rhodosamine units were more

pronounced than the corresponding cleavages a-d of the mycarose residue, and the base peak of the spectrum

in general was due to the ions m and/or n. The presence of the ions m and n, and their high relative intensity

⁷ H. Tsukiura, M. Konishi, M. Saka, T. Naito, and H. Kawaguchi, J. Antibiotics, 1969, 22, 89.
⁸ H. Muxfeldt, S. Shrader, P. Hansen, and H. Brockmann,

J. Amer. Chem. Soc., 1968, **90**, 4748. M. E. Kuehne and B. W. Benson, J. Amer. Chem. Soc., 1965,

87, 4660.

- ¹⁰ S. Omura, A. Nakagawa, M. Otani, T. Hata, H. Ogura, and K. Furuhata, J. Amer. Chem. Soc., 1969, 91, 3401.
 ¹¹ S. Omura, M. Katagiri, and T. Hata, J. Antibiotics, 1968, 21,
- 272.
- ¹² A. K. Mallams, J. Amer. Chem. Soc., 1969, 91, 7505.

¹³ A. K. Mallams, R. S. Jaret, and H. Reimann, J. Amer. Chem. Soc., 1969, **91**, 7506.

¹⁴ A. K. Mallams, J.C.S. Perkin I, 1973, 1369.

TABLE 1

Megalomicin derivatives

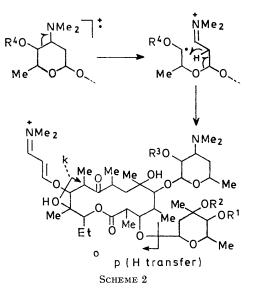
Compound	Formula	M+	a	b	c	d	е	f	g	h	i	j	k
(1) (2) (3)	$\substack{ C_{44}H_{80}N_2O_{15}\\ C_{48}H_{82}N_2O_{16}\\ C_{48}H_{84}N_2O_{17}\\ }$	876(0.46) 918(0.25)	731(0.12) 731(0.13)	732(0.2) 732(0.21)	715(0·1) 715(0·08)	716(0.06) 716(0.06)	718(0.3) 760(0.17)	719(0·2) 761(0·15)	702(0.28) 744(0.18)	703(0.37) 745(0.17)	718(0·3) 760(0·17)	719(0.2) 761(0.15)	702(0·28) 744(0·18)
(3) (4) (5) 16	$C_{48}H_{84}N_2O_{17}$ $C_{49}H_{86}N_2O_{17}$ $C_{49}H_{86}N_2O_{17}$	960(0 ·11) 974(0 ·1) 960(0 · 56)	731(0·10) 731(0·2) 815(0·08)	732(0·05) 732(0·2) 816(0·11)	715(0•14) 715(0•3) 799(0•1)	716(0.07) 716(0.06) 800(0.25)	802(0·15) 816(0·1) 760(0·37)	803(0·10) 817(0·07) 761(0·14)	786(0·23) 800(0·14) 744(0·65)	787(0-24) 801(0-14) 745(0-5)	802(0·15) 816(0·1) 760(0·37)	803(0·10) 817(0·07) 761(0·14)	786(0·23) 800(0·14) 744(0·65)
(6) (7) (8)	$\begin{array}{c} C_{48} H_{84} N_2 O_{17} \\ C_{48} H_{86} N_2 O_{17} \\ C_{48} H_{84} N_2 O_{17} \\ C_{50} H_{86} N_2 O_{18} \\ C_{50} H_{86} N_2 O_{18} \\ C_{50} H_{86} N_2 O_{18} \\ C_{52} H_{88} N_2 O_{19} \\ C_{-1} H_{-1} N_2 O_{19} \\ \end{array}$	960(0.03) 1002(0.3)	773(0.04) 815(0.1)	774(0·1) 816(0·1)	799(0.1)	800(0.07)	802(0.03) 802(0.2)	803(0.03) 803(0.1)	786(0•04) 786(0•4)	787(0·02) 787(0·3)	760(0•04) 802(0•2)	761(0·02) 803(0·1)	744(0·1) 786(0·4)
(9)	C ₅₀ H ₈₆ N ₂ O ₁₈ C ₅₂ H ₈₈ N ₂ O ₁₉	1002(0.05) 1044(0.16)	773(0·05) 815(0·05)	774(0.03)	757(0·06) 799(0·07)	758(0-04) 800(0-05)	844(0·05) 844(0·08)	845(0·03) 845(0·05)	828(0·06) 828(0·28)	829(0·04) 829(0·21)	802(0.07) 844(0.08)	803(0·04) 845(0·05)	786(0-12) 828(0-28)
(10) (11) (12)	C47H84N2O16	932(0-65) 932(0-2) 988(0-08)	787(0·1) 731(0·25) 843(0·05)	788(0•2) 732(0•2) 844(0•09)	771(0·1) 715(0·2) 827(0·03)	716(0.15) 828(0.02)	718(0·5) 774(0·4) 774(0·11)	719(0·2) 775(0·2) 775(0·05)	702(0.6) 758(0.65) 758(0.34)	703(0·3) 759(0·75) 759(0·27)	774(0·4) 774(0·4) 774(0·11)	775(0·3) 775(0·2) 775(0·05)	758(1·2) 758(0·65) 758(0·34)
(12) (13) (14)	C50H88N2O17 C50H88N2O17 C53H92N2O18	988(0.03) 988(0.14) 1044(0.04)	731(0·09) 843(0·03)	732(0.05) 844(0.03)	715(0.03) 827(0.03)	716(0·02) 828(0·02)	830(0·19) 830(0·09)	831(0.15) 831(0.04)	814(0·22) 814(0·27)	815(0.24) 815(0.18)	830(0·19) 830(0·09)	831(0·15) 831(0·04)	814(0·22) 814(0·27)
$(15) \\ (16)$	C56H98N2O19 C51H88N2O18	1100(0.02) 1016(0.43)	843(0·03) 787(0·15)	844(0·01) 788(0·09)	827(0·04) 771(0·11)	828(0·1) 772(0·08)	886(0·07) 802(0·14)	887(0-04) 803(0-07)	870(0·23) 786(0·2)	871(0·15) 787(0·15)	886(0.07) 858(0.14)	887(0.04) 859(0.11)	870(0·23) 842(0·46)
(17)	C42H ₇₃ N ₂ O ₁₅	831 (0-33)		687(0·45)		671(0.12)	718(0.06)	719(0.03)	702(0.03)	703(0.02)			657(0.02)
Compound (1)	Formula C44H80N2O13	703(0.37)	b and e 574(0•3)	b and f 575(0 ·1 5)	b and g 558(0·9)	b and h 559(0·4)	b and i 574(0•3)	b and j 575(0·15)	b and k 558(0·9)	b and 1 559(0·4)	m 158(100)	n 158(100)	o 801(0·75)
(2) (3)	C48H82N2O16 C48H84N2O17	745(0.17) 787(0.24)	575(0-13)	575(0.05)	558(0•43) 558(0•29)	559(0.22) 559(0.12)	574(0.13)	575(0.05)	558(0·43) 558(0·29)	559(0.22) 559(0.12)	$158(100) \\ 158(100)$	$158(100) \\ 158(100)$	843(0·35) 885(0·18)
(4) (5) 16	$C_{49}H_{86}N_{2}O_{17}$ $C_{48}H_{84}N_{2}O_{17}$	801(0·14) 745(0·05) 745(0·07)	574(0·04) 616(0·2) 616(0·08)	575(0.02) 617(0.8)	558(0·7) 600(0·7) 600(0·07)	559(0•1) 601(0•38) 601(0•05)	574(0·04) 616(0·2) 574(0·05)	575(0.02) 617(0.08) 575(0.04)	558(0·7) 600(0·7) 558(0·4)	559(0.1) 601(0.38) 559(0.25)	$158(100) \\ 200(100) \\ 158(53)$	158(100) 200(100) 200(60)	899(0·17) 843(1·7) 842(0.2)
(1) (2) (3) (4) (5) 16 (6) (7) (8) (9)	C48H84N2O17 C50H88N2O18 C50H86N2O18	787(0.3)	616(0.03) 616(0.02)	617(0-02) 617(0-03) 617(0-01)	600(0·3) 600(0·05)	601(0.03) 601(0.18) 601(0.02)	616(0.1)	575(0-04) 617(0-03)	600(0·3) 558(0·16)	601(0·18) 559(0·08)	200(100) 158(62)	200(69) 200(100) 200(100)	843(0-2) 885(1-1) 885(0-19)
(10)	C ₅₂ H ₈₈ N ₂ O ₁₉ C ₄₇ H ₈₄ N ₂ O ₁₆	787(0·12) 829(0·21) 759(0·7)	616(0·03) 574(0·6)	617(0.01) 575(0.3)	600(0.15) 558(0.5)	601(0·06) 559(0·2)	616(0.03) 630(0.5)	617(0.01) 631(0.6)	600(0.15) 614(1.4)	601(0·06) 615(0·8)	200(100) 214(60)	$200(100) \\ 158(100)$	927(0·4) 857(1·7)
(11) (12) (13)	$C_{47}H_{84}N_{2}O_{16}$ $C_{50}H_{88}N_{2}O_{17}$	759(0.75) 759(0.27) 815(0.24) 815(0.18) 871(0.15)	574(0·3) 630(0·6) 574(0·1)	575(0·2) 631(0·12) 575(0·04)	558(1.5) 614(0.82) 558(0.35)	559(0·7) 615(0·52) 559(0·13)	574(0·3) 630(0·33) 574(0·1)	575(0·2) 631(0·12) 575(0·04)	558(1·5) 614(0·82) 558(0·35)	559(0·7) 615(0·52) 559(0·13)	158(100) 214(60) 158(100)	158(100) 214(60) 158(100)	857(1·0) 857(0·51) 913(0·3)
(13) (14) (15)	C ₅₀ H ₈₈ N ₂ O ₁₇ C ₅₃ H ₉₂ N ₂ O ₁₈ C ₅₆ H ₉₈ N ₂ O ₁₉	815(0.18) 815(0.18) 871(0.15)	630(0.08) 630(0.02)	631(0.03) 631(0.01)	614(0·23) 614(0·09)	615(0.13) 615(0.03)	630(0.08) 630(0.02)	631(0.03) 631(0.01)	614(0.23) 614(0.09)	615(0·11) 615(0·03)	214(100) 214(100)	214(100) 214(100)	913(0.44) 969(0.23)
(16) (17)	$C_{51}H_{88}N_2O_{18}$ $C_{42}H_{73}N_2O_{13}$	843(0·32) 658(0·08)	574(0-02) 574(0-3)	575(0-01) 575(0 -1)	558(0 ·1 3) 558(0·16)	559(0•04) 559(0•06)	630(0·06)	631(0 ·03)	614(0·31)	615(̀0·12)́	214(55) ′	158(100) 158(100)	941(0·55) 756(0·4)
Compound	Formula	р	q	r	s and/or t	u	v	w	x	У	z	aa	bb
(1) (2) (3)	$\substack{C_{44}H_{80}N_2O_{13}\\C_{46}H_{82}N_2O_{16}}$	657(0.55) 657(0.28)	$174(8) \\ 174(7)$	174(8) 174(7)	140(3) 140(4)	87(14) 87(9)	$86(5) \\ 86(4)$	$71(30) \\ 71(26)$	70(3·5) 70(3)	98(18) 98(17)	$116(15) \\ 116(13)$	114(8) 114(8)	100(26) 100(27)
(4)	C48H84N2O17 C49H88N2O17	657(0-28) 657(0-8)	174(7) 174(8)	174(7) 174(8)	140(4) 140(4)	87(7) 87(6)	86(3) 86(3)	$71(20) \\ 71(17)$	70(2) 70(2)	98(16) 98(15)	116(13) 116(16)	114(7) 114(7)	100(22) 100(20)
$(5)^{16}$ (6)	$C_{48}H_{84}N_2O_{17}$	699(1+0) 657(0+3)	216(6) 174(9)	216(6) 216(2·5)	140(9) 140(9)	129(2) 87(6) 87(13)	86(2) 86(4)	71(21) 71(36)	70(2) 70(4)	98(16) 98(26)	116(8) 116(13)	156(9) 114(8) 156(12)	100(23) 100(33)
(8)	C ₄₈ H ₈₄ N ₂ O ₁₇ C ₅₀ H ₈₆ N ₂ O ₁₈	699(0·7)	216(6)	216(2 0) 216(6)	140(10)	129(3)	86(4)	71(32)	70(4)	98(27)	116(9)	114(10) 156(12)	100(31)
(8)	C ₃₀ H ₈₆ N ₂ O ₁₈	657(0-2)	174(19)	216(4)	140(8)	$87(6) \\ 129(2)$	86(4)	71(24)	70(4)	98(35)	116(19)	114(10) 156(15)	100(48)
(9)	$C_{32}H_{88}N_2O_{19}$	699(0.75)	216(5)	216(5)	140(7)	$87(8) \\ 129(2) \\ 87(2)$	86(1)	71(11)	70(1)	98(12)	116(5)	114(12) 156(7) 114(6)	100(17)
(10) (11)	C47H84N2O16 C47H84N2O16	713(0.1) 657(0.9)	$230(3) \\ 174(13)$	174(13) 174(13)	140(25) 140(7)	87(13) 87(9)	$\frac{86(7)}{86(5)}$	71(51) 71(27)	70(4) 70(3)	98(47) 98(25)	116(19) 116(16)	114(6) 114(16) 114(11)	100(45) 100(25)
(12)	$C_{50}H_{88}N_2O_{17}$	713(0.8)	230(3•7)	230(3.7)	140(8.3)	87(8)	86(2)	71(13)	70(2)	98(16)	116(7)	170(4·7) 114(6)	100(16)
$(13) \\ (14)$	C ₅₀ H ₈₈ N ₂ O ₁₇ C ₅₃ H ₉₂ N ₂ O ₁₈	657(0·3) 713(0·4)	174(8) 230(5)	$174(8) \\ 230(5)$	140(4) 140(10)	87(7) 87(6)	$86(4) \\ 86(4)$	$71(24) \\ 71(35)$	70(3) 70(5)	98(21) 98(23)	116(16) 116(8)	114(8) 170(10) 114(1 1)	100(28) 100(26)
(15)	$C_{36}H_{96}N_2O_{19}$	713(0-34)	230(6)	230(6)	140(12)	87(3)	86(2)	71(18)	70(2)	98(19)	116(8)	170(8) 114(9)	100(26)
(16) (17)	C ₅₁ H ₈₈ N ₂ O ₁₆ C ₄₂ H ₇₃ N ₂ O ₁₅	713(0·46) 612(0·8)	230(2)	174(5) 174(4)	140(16)	87(4) 87(17)	86(3) 86(8)	71(21) 71(64)	70(2) 70(5)	98(22)	116(10)	114(9) 114(7)	100(26) 100(47)
Compound	Formula	cc	dd	ee	ff	gg	hħ	ii	ji	kk and/or ll	1	Miscellaneou	s
(1) (2)	C44H89N2O13 C46H82N2O16	$145(4) \\ 187(4)$	$127(5) \\ 169(4)$	$109(2 \cdot 5) \\ 109(12)$	748(0·77) 790(0·32)	604(0·35) 604(0·13)	444(0.6) 444(0.24)	$426(0\cdot3) \\ 426(0\cdot37)$	818(0·04) 860(0·07)	791(0·2) 833(0·14)			
(3) (4)	C48H84N2O17 C49H86N2O17	$229(3) \\ 243(3)$	$169(15) \\ 183(12)$	109(27) 109(27)	$832(0\cdot 31) \\ 846(0\cdot 19)$		444(0·09) 444(0·06)	426(0.3) 426(0.4)	902(0.01) 916(0.02)	875(0•07) 889(0•05)		914(0.02);	M - 74:
(5) 18	$C_{48}H_{84}N_2O_{17}$	145(2)	127(4)	109(3)			486(0.16)	468(0.06)	902(0.2)	875(0.05)	900(0.09 M - 60: 42; 858	900(0.12);	M - 60 -
(6)	$\rm C_{48}H_{84}N_2O_{17}$	187(4)	169(3)	109(14)	832(0.16)	646(0.1)	486(0-25)	468(0.12)	902(0.011)		M = 60: 42; 858	900(0·02); / (0·04)	
(7)	$C_{50}H_{86}N_{3}O_{18}$	187(4)	169(2·5)	109(12)	074(0.1-)	A A A A A	486(0·2)	468(0·1)	944(0·15)	917(0.05)	42: 900	942(0·08); / (0·5)	
(8) (9)	$C_{50}H_{86}N_2O_{18}$	229(3) 229(2)	169(26) 169(9)	109(56) 109(16)	874(0.15)	646(0.04)	486(0.07) 486(0.03)	468(0·08) 468(0·06)	986(0·01) 986(0·05)	959(0.01) 959(0.02)	42; 900	942(0+02); 1 (0+01) 984(0+01); 1	
(9) (10)	C52H8N2O19 C47H84N9O15		109(9)						• •		M = 60: 42; 942 M = 56: M = 56:	(0-19) 801(0-6)	
(10) (11) (12)	C ₄₇ H ₈₄ N ₂ O ₁₆ C ₄₇ H ₈₄ N ₂ O ₁₆ C ₅₀ H ₈₈ N ₂ O ₁₇	145(7) 201(12) 145(15)	183(7) 127(4·5) 183(18)	$109(3) \\109(16) \\109(26) \\109(48) \\109(20)$	804(1.1)	604(0.4)	$\begin{array}{c} 444(2\cdot 6)\\ 444(0\cdot 6)\\ 500(0\cdot 22)\\ 444(0\cdot 1)\\ 500(0\cdot 07)\\ 500(0\cdot 01)\\ 444(0\cdot 08)\\ 444(0\cdot 3)\end{array}$	$\begin{array}{c} 426(1\cdot0)\\ 426(1\cdot0)\\ 482(0\cdot07)\\ 426(0\cdot21)\\ 482(0\cdot1)\\ 482(0\cdot04)\\ 426(0\cdot2)\\ 426(0\cdot2)\\ 426(0\cdot1)\end{array}$	$\begin{array}{c} 874(0{\cdot}15)\\ 874(0{\cdot}08)\\ 930(0{\cdot}02)\\ 930(0{\cdot}03)\\ 986(0{\cdot}03)\\ 1042(0{\cdot}01)\\ 958(0{\cdot}1)\\ 773(0{\cdot}04) \end{array}$	847(0·1) 847(0·15) 903(0·01) 903(0·1)	M - 56:	801(0-6)	
(12) (13) (14) (15) (16) (17)	$C_{50}H_{88}N_2O_{17}$ $C_{53}H_{92}N_2O_{18}$	257(3) 201(3) 257(3) 229(4)	183(1-5)	109(9)	860(0-45)		444(0·1) 500(0·07) 500(0·01)	426(0.21) 482(0.1) 482(0.04)	930(0-03) 986(0-03) 1049(0-01)	903(0.1)			
(15) (16) (17)	$C_{56}H_{96}N_2O_{19}$ $C_{51}H_{88}N_2O_{18}$ $C_{42}H_{73}N_2O_{15}$	257(3) 229(4) 145(6)	183(14) 169(19) 127(9)	109(33) 109(31) 109(7)			444(0·08) 444(0·3)	482(0.04) 426(0.2) 426(0.1)	958(0·1) 773(0·04)	931(0·07) 746(0·14)	M = 60; mm: 748(0.19): mm	- 18:
()	-4273-12-15						(* *)			()	730(0.17); mm $- b$	604(0.8);

730(0.17); mm - b 604(0.8); mm - k: 574(0.3); nn: 113(11) compared with the remainder of the peaks affords a ready method of determining the compositions of any amino-sugar systems in a macrolide antibiotic. In the case of megalomicin A (1), the formation of one high intensity peak at m/e 158 suggested that both amino-sugar residues had the same composition, giving rise to the C₈H₁₆NO₂ ions, which constituted the base peak in

TABLE 2

High resolution mass spectral data

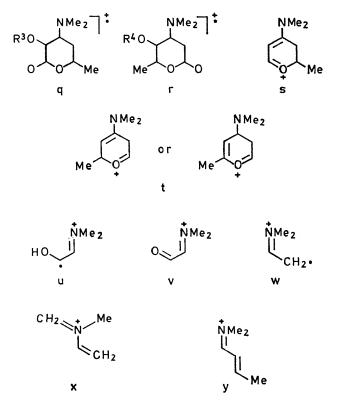
Compound	Ion(s)	Calc.	Obs.
(1) <i>a</i>	M+	876.5557	876-5496
(1)	e and i	$718 \cdot 4375$	718-4353
	f and j	719.4453	719.4409
	g and k	702.4426	702.4395
	h and l	703.4504	703.4468
	b and g; b and k	558.3640	$558 \cdot 3640$
	b and h; b and l	$559 \cdot 3718$	559.3748
	0	$801 \cdot 5110$	801.5088
	ff	$748 \cdot 4482$	$748 \cdot 4402$
	kk and ll	$791 \cdot 4902$	$791 \cdot 4868$
	hh	$444 \cdot 2959$	$444 \cdot 2913$
	cc	145.0864	145.0886
	dd	$127 \cdot 0759$	127.0765
	ee	109.0653	109.0666
	q and r	$174 \cdot 1130$	$174 \cdot 1131$
	m and n	$158 \cdot 1181$	$158 \cdot 1166$
	s and t	140.1075	$140 \cdot 1057$
	у	98.097 0	98.0979
	aa	114.0919	114.0928
	z	116.0711	116.0736
	bb	100.0762	100.0759
	u	87.0684	87.0688
	v	86.0606	86.0622
	w	71.0735	$71 \cdot 0732$
	x	70.0657	70.0666
(37) ^b	M+	539.346	$539 \cdot 345$
	jj′′′′	$481 \cdot 304$	$481 \cdot 301$
	e''''	$381 \cdot 228$	$381 \cdot 225$
	g''''	$365 \cdot 232$	$365 \cdot 229$
	q	174.113	$174 \cdot 113$
	'n	158.118	$158 \cdot 118$
(40) b	М÷	623.367	$623 \cdot 368$
(10)	e''''	423.238	423.235
	g''''	407.243	407.243
	ww	347.222	347.221
	m	200.129	200.131
	s	140.108	140.101
	-		


^a Measured on an A.E.I. MS902B spectrometer. ^b Measured on a JEOL JMS-01SC spectrometer.

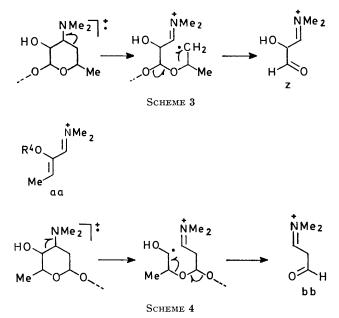
the spectrum. Acylation of the hydroxy-groups in each of the amino-sugars caused the base peak to shift to m/e 200 in the case of the acetates, and to m/e 214 in the case of the propionates. The glycosidic cleavages e—l in the high mass region also shifted by 42 and 56 mass units, respectively. Where only one of the hydroxy-groups in either of the amino-sugars was acylated, two intense peaks at m/e 158 and 200 (acetate) or 214 (propionate) were formed, the latter being of lower relative intensity owing to partial conversion into the ions m/e 158 by loss of keten or methylketen for the acetates and propionates, respectively. In those derivatives of the megalomicins where the acyl groups were located solely in the mycarose unit, the base peak in each case was at m/e 158, with the appropriate high

¹⁵ R. S. Jaret, A. K. Mallams, H. Reimann, and H. F. Vernay, unpublished observations.

mass cleavages e—l. The foregoing fragmentations afford a convenient means of locating various acyl groups in three specific areas of the molecule, namely the amino-sugar residues, the mycarose unit, and the aglycone. Peaks were also observed for successive cleavages involving mycarose and either desosamine or rhodosamine, and are given in Table 1.


One of the principal fragmentations in the rhodosamine unit is outlined in Scheme 2. In the case of megalomicin A (1) this loss of 75 mass units from the molecular ion to give the ion o indicated that rhodosamine was a 2,3,6trideoxy-3-dimethylamino-sugar, a conclusion confirmed by isolation and chemical degradation of the Drhodosamine.^{12, 14} The formation of the ion o made it

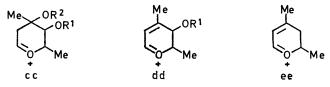
possible not only to locate an acyl group in the aminosugars as already described, but also to determine which of the two amino-sugars contained the acyl substituent. This provided a convenient method for locating the acetyl group in the rhodosamine in the esters (6) and (8), and the propionyl group in the desosamine in the esters (10) and (16). In the case of the acetyl derivatives of the megalomicins it was possible to confirm the foregoing assignments, as well as all of those indicated in Table 1, from the chemical shifts of the acetyl groups in the n.m.r. spectra.^{1,15,16} This was not possible with the propionates. The ion o was found to undergo further cleavage to give the ion k by loss of 99 mass units, and also the ion p by loss of the mycarose unit accompanied by a hydrogen atom transfer.


The low mass region of the spectra showed characteristic fragment ions from the expected cleavages of desosamine and rhodosamine.¹⁴ In addition to the base peak due to m and n, peaks were also present due to fragments q and r. The further loss of water or alkanecarboxylic acid (acetic or propionic) from m and n gave rise to a peak at m/e 140 due to the fragments s

¹⁶ Compounds (11), (13), and (15) were prepared under the direction of H. Reimann; manuscript in preparation.

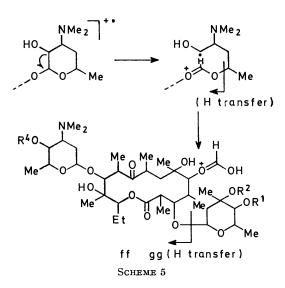
to the formation of ions u-x in which the charge was

stabilised on the nitrogen atom.¹⁴ In addition, desosamine gave rise to fragment ions y ¹⁴ and z, and rhodosamine gave ions aa ¹⁴ and bb, respectively. The formation of the ions z and bb may be postulated to occur as



outlined in Schemes 3 and 4, respectively, with stabilis-

ation of the charge on the nitrogen atom in both


instances.

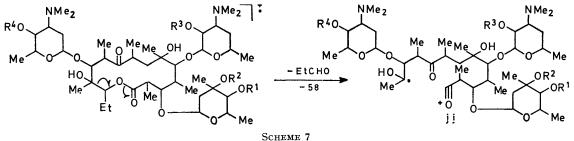
In those derivatives of the megalomicins where the acyl groups were located in the mycarose unit, this was evident from the high mass ions arising from the glycosidic cleavages a—d. In those examples where the mycarose contained one acyl substituent, or where the mycarose contained mixed acyl substituents, it was possible, by locating peaks due to the fragment ions cc, dd, and ee in the low mass region of the spectrum, to

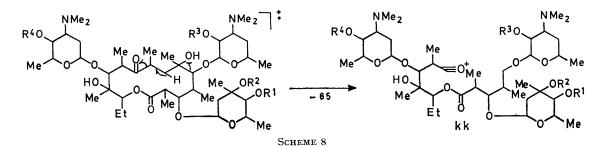
assign the monoacyl or mixed acyl substituents to the 3- or 4-positions, respectively, in the mycarose unit. This proved to be a useful way of locating the acetyl group at C-4 in megalomicin B (2), and for locating the acetyl group at C-3' and the propionyl group at C-4' in megalomicin C_2 (4). Both these conclusions were checked by n.m.r. measurements and by isolation and degradation of the appropriate mycarose units from structures (2) and (4).¹

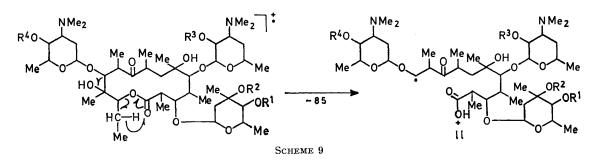
In those megalomicin derivatives where the desosamine was not acylated, a fragment ion was observed corresponding to $M^+ - 128$, which could arise from the ion ff (Scheme 5). Peaks corresponding to further

glycosidic cleavage of the mycarosyl residue leading to the formation of the ions gg from the ions ff were also observed (Scheme 5).

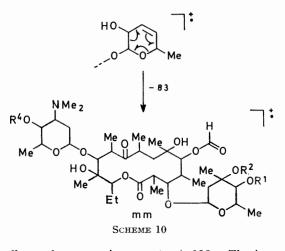
The megalomicins underwent several interesting cleavages in the aglycone. One of these gave rise to what is postulated to be the ion hh, which could arise as a result of a McLafferty rearrangement at the lactone carbonyl group accompanied by a cleavage of the C(6)-C(7) bond adjacent to the tertiary C-6 (Scheme 6). In those megalomicin derivatives where the rhodosamine


1392


was acylated the fragment hh shifted to a higher m/e value by 42 mass units in the case of an acetate and by 56 mass units in the case of a propionate. The presence of the ion hh provided additional evidence for locating the rhodosamine unit between C-7 and C-13 in the aglycone, and also for determining the location of a monoacyl substituent in either the desosamine or

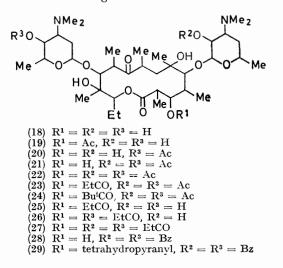

cleavage adjacent to the tertiary C-12 would constitute a favourable cracking pattern leading to the formation of ion jj.

A medium-intensity peak in the high mass region of the spectra of the megalomicins corresponding to a loss of a C_5H_9O unit ($M^+ - 85$) could arise either as a result of cleavage α to the 9-oxo-group and adjacent to the

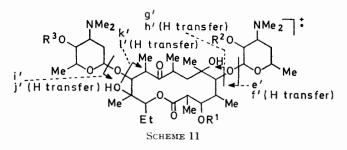

rhodosamine units. The fragment ion hh also lost a molecule of water to give the ion ii.

The megalomicins also gave a peak in the high mass region corresponding to the loss of propionaldehyde $(M^+ - 58)$, leading to the ion jj (Scheme 7). Cleavage next to the lactone carbonyl group with stabilisation of the charge on the carbonyl oxygen atom, together with

tertiary C-6 with hydrogen atom transfer, leading to ion kk (Scheme 8), or *via* a McLafferty rearrangement at the lactone system, accompanied by cleavage adjacent to the tertiary C-12 to give ion ll (Scheme 9). Both processes appear to be favourable on mass spectral grounds.


In general, the acetyl derivatives of the megalomicins

lost acetic acid and/or keten from the molecular ion (Table 1), whereas the propionates lost propionic acid, and/or methylketen.


as well as a low mass ion nn at m/e 113. The ion mm underwent further losses of a water molecule (mm - 18), a mycarosyl unit (mm - b), and a rhodosaminyl unit (mm - k) giving rise to ions at m/e 730, 604, and 574, respectively. The fragment ions aa and z, associated with the rhodosamine unit, were present in the mass spectrum of (17), while the ions v and bb, derived from amine-induced cleavages in the desosamine residue, were absent in the spectrum. The expected ions u-x¹⁴ common to both amino-sugars were observed in the spectrum of (17). As in the case of the megalomicins where $\mathbb{R}^4 = \mathbb{H}$, the fragments at m/e 444 (hh) and 426 (ii) were again observed in the mass spectrum of (17), further supporting the fact that these ions contained the rhodosamine unit. Losses of 58 mass units to give the fragment jj † and of 85 mass units to give ions kk † and ll † were also observed in the spectrum of (17).

In the course of the degradation of the megalomicins, mild aqueous acidic hydrolysis was found to cause selective hydrolysis of the mycarose giving megalalosamine (18).^{1,13} A number of derivatives (19)—(29) of megalalosamine (18) were prepared,¹⁷ and some of the more important fragment ions from these compounds are given in Table 3. In general the megalalosamines exhibited similar fragmentations to those encountered

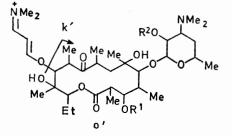
with the megalomicins, with the exception of the mycarose-derived ions which were absent in the former.

Fragmentation at the glycosidic bonds in the megalalosamines gave rise to the ions $e'-l',\ddagger$ and the base peak in the spectrum was due to ions m and/or n, in general. Acylation of the hydroxy-groups in the amino-sugars again caused the appropriate shifts in the m/e values of the ions e'-l', and also caused the base peak mass number to increase by the expected values for the various acyl substituents. In the case of the triacyl derivatives it was possible by studying the m/e values of the foregoing ions to locate the various acyl substituents in the amino-sugar residues or in the aglycone, respectively. Further distinctions between the location of a particular acyl substituent in the desosamine or rhodosamine units could then be made from the m/e values of the ion o'. A 10 eV scan of megalalosamine revealed the presence of metastable peaks at m^* 589.7 corresponding to the transition $M^+ \longrightarrow o'$ and also m^* 473.9 corresponding

to o' \longrightarrow k'. These metastable peaks afforded evidence for the fact that the ion k' was produced not only by a single-stage glycosidic cleavage (Scheme 11), but also

 $[\]dagger$ The analogous ion in which the desosamine unit had been deaminated.

[‡] Where analogous fragmentations have been discussed for the megalomicins these are indicated by the same alphabetical symbol followed by a prime notation in the case of the megalalosamines, a double prime notation in the case of the dihydroderivatives, a triple prime notation, in the case of the erythromycins, and a quadruple prime notation for the erythralosamines.


¹⁷ A. K. Mallams and H. F. Vernay, unpublished observations.

by a two-stage cleavage involving the ion o'. The presence of the fragments hh and ii in the megalalosamines also proved useful in locating an acyl substituent if it was present in the rhodosamine unit, although these not acylated. The loss of propionaldehyde from the molecular ion to give ion jj' was observed in most of the derivatives, and ions kk' and ll' were also present in the mass spectra of the megalalosamines. Losses of acetic,

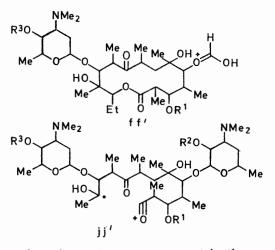
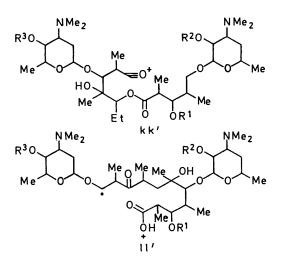
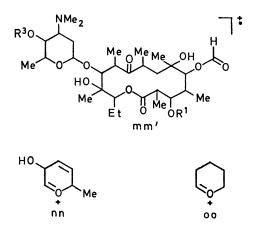

	Megalalosamine derivatives													
Compd (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30)	Formula C37He8N3O13 C39H70N3O13 C41H72N3O13 C41H72N3O13 C41H72N3O13 C41H72N3O13 C41H72N3O13 C44H72N3O13 C44H72N3O13 C44H72N3O13 C44H72N3O13 C44H72N3O13 C31H72N3O1	$\begin{array}{c} M^+ \\ 732(0\cdot48) \\ 774(1\cdot2) \\ 774(0\cdot65) \\ 816(0\cdot17) \\ 858(0\cdot74) \\ 872(0\cdot65) \\ 900(0\cdot4) \\ 788(0\cdot18) \\ 844(1\cdot5) \\ 900(1\cdot2) \\ 940(4\cdot0) \\ 1024(0\cdot015) \\ 687(0\cdot55) \end{array}$	$\begin{array}{c} e'\\ 574(0\cdot57)\\ 616(1\cdot0)\\ 616(1\cdot3)\\ 616(1\cdot3)\\ 616(1\cdot3)\\ 616(0\cdot6)\\ 672(0\cdot22)\\ 700(0\cdot55)\\ 630(0\cdot25)\\ 630(0\cdot25)\\ 686(0\cdot53)\\ 686(0\cdot53)\\ 686(0\cdot53)\\ 686(0\cdot53)\\ 678(0\cdot9)\\ 762(0\cdot13)\\ 574(0\cdot59) \end{array}$	$\begin{array}{c} f'\\ 575(0{-}33)\\ 617(0{-}6)\\ 617(0{-}5)\\ 617(0{-}2)\\ 659(0{-}38)\\ 673(0{-}88)\\ 673(0{-}88)\\ 631(0{-}12)\\ 687(0{-}4)\\ 687(0{-}4)\\ 687(0{-}4)\\ 679(0{-}4)\\ 763(0{-}05)\\ 575(0{-}22)\\ \end{array}$	$\begin{array}{c} g'\\ 558(1\cdot26)\\ 600(1\cdot3)\\ 600(0\cdot3)\\ 600(0\cdot3)\\ 600(1\cdot0)\\ 656(1\cdot17)\\ 684(0\cdot75)\\ 614(0\cdot28)\\ 670(0\cdot3)\\ 670(1\cdot5)\\ 662(7\cdot0)\\ 746(0\cdot07)\end{array}$	$\begin{array}{c} h'\\ 559(1-05)\\ 601(2-0)\\ 601(0-35)\\ 601(0-35)\\ 601(0-8)\\ 637(2-08)\\ 635(1-15)\\ 615(0-44)\\ 671(2-6)\\ 663(8-8)\\ 747(0-05)\\ \end{array}$	$\begin{array}{c} {\rm i}'\\ 574(0{\text{-}}57)\\ 616(1{\text{-}}0)\\ 574(0{\text{-}}5)\\ 618(0{\text{-}}6)\\ 658(0{\text{-}}84)\\ 672(0{\text{-}}22)\\ 700(0{\text{-}}5)\\ 630(0{\text{-}}25)\\ 630(0{\text{-}}25)\\ 630(0{\text{-}}5)\\ 6$	$\begin{array}{c} j'\\ 575(0\cdot33)\\ 617(0\cdot6)\\ 575(0\cdot2)\\ 617(0\cdot2)\\ 617(0\cdot2)\\ 659(0\cdot38)\\ 673(0\cdot88)\\ 701(0\cdot25)\\ 631(0\cdot12)\\ 631(0\cdot6)\\ 687(0\cdot5)\\ 679(0\cdot4)\\ 768(0\cdot05)\\ 530(0\cdot02)\\ \end{array}$	$\begin{array}{c} k'\\ 558(1\cdot 26)\\ 600(1\cdot 3)\\ 558(4\cdot 3)\\ 600(1\cdot 0)\\ 642(1\cdot 0)\\ 656(1\cdot 17)\\ 684(0\cdot 73)\\ 614(0\cdot 28)\\ 614(2)\\ 670(1\cdot 5)\\ 662(7\cdot 0)\\ 746(0\cdot 07)\\ \end{array}$	$\begin{matrix} l' \\ 559(1{\text{-}}05) \\ 601(2{\text{-}}0) \\ 559(2{\text{-}}5) \\ 601(0{\text{-}}8) \\ 657(2{\text{-}}08) \\ $	$\begin{array}{c} nn\\ 158(100)\\ 158(100)\\ 158(99)\\ 200(100)\\ 200(100)\\ 200(100)\\ 200(100)\\ 158(100)\\ 158(100)\\ 158(100)\\ 214(100)\\ 262(94)\\ 262(33)\end{array}$	$\begin{array}{c} n\\ 158(100)\\ 188(100)\\ 200(100)\\ 200(100)\\ 200(100)\\ 200(100)\\ 200(100)\\ 158(100)\\ 214(67)\\ 214(100)\\ 262(94)\\ 262(33)\\ 158(100)\\ \end{array}$		
Compo (18) (19)		o' 657(1·12) 699(2·5)	q 174(7·5) 174(9·3)	r 174(7·5) 174(9·3)	s and/or t 140(2•5) 140(6)	u 87(12) 87(10)	v 86(8) 86(7)	w 71(45) 71(82)	x 70(6·5) 70(26)	y 98(20) 98(28)	z 116(16) 116(15)	aa 114(8) 114(10)		
(20) (21)	C ₃₉ H ₇₀ N ₂ O ₁₃ C ₄₁ H ₇₂ N ₂ O ₁₄	657(3·9) 699(0·9)	174(25) 216(4)	216(6) 216(4)	140(10) 140(10)	129(4) 87(19) 129(2•5)	86(10) 86(4)	71(12) 71(36)	70(8) 70(6)	98(33) 98(28)	116(30) 116(13)	$\begin{array}{c} 114(8) \\ 114(10) \\ 156(26) \\ 114(17) \\ 156(11) \\ 156(11) \\ 156(11) \\ 156(11) \\ 114(10) \\ 156(14) \\ 114(11) \end{array}$		
(22)	C43H74N2O15	741(4.4)	216(6)	216(6)	140(8)	$87(5) \\ 129(2)$	86(4)	71(35)	70(5)	98(21)	116(9)	$114(9) \\ 156(11)$		
(23)	C44H76N2O23	755(6-7)	216(6)	216(6)	140(9)	87(5) 129(3)	86(3)	71(29)	70(4)	98(20)	116(10)	$114(10) \\ 156(14)$		
(24)	$C_{46}H_{80}N_2O_{13}$	783(2·1)	216(6.5)	216(6.5)	140(10)	87(3.8) 129(2.7) 87(5)	86(4)	71(31)	70(3.5)	98(20)	116(10)	$114(11) \\ 156(16)$		
(25) (26)	$\substack{ C_{40}H_{72}N_2O_{13}\\ C_{43}H_{76}N_2O_{14} }$	713(0·57) 713(4)	174(6) 174(7)	174(6) 230(4)	140(3) 140(15)	87(5) 87(10) 87(17)	86(6) 86(13)	71(11) 71(76)	70(4) 70(18)	$98(19) \\ 98(52)$	116(15) 116(30)	136(14)114(11)156(16)114(12)114(8)170(22)114(31)170(14)114(22)019(27)		
(27)	$C_{46}H_{80}N_2O_{15}$	769(4)	230(5)	230(5)	140(21)	87(7)	86(7)	71 (4 6)	70(11)	98(46)	116(15)	114(51) 170(14) 114(99)		
(28)	$C_{31}H_{76}N_2O_{14}$	761(7.1)	278(6)	278(6)	140(30)	191(3)		71(90)	70(12)	98(56)	116(15)	$\begin{array}{c} 114(22) \\ 218(27) \\ 114(14) \\ 218(11) \\ 114(8) \\ 114(9) \end{array}$		
(29)	$\rm C_{56}H_{84}N_2O_{15}$	845(0.08)	278(2.7)	$278(2 \cdot 7)$	140(15)	87(5)	86(9)	71(39)	70(15)	98(22)	116(6)	218(11) 114(8)		
(30)	$\mathrm{C_{33}H_{61}NO_{12}}$	612(1.52)		174(ð)	140(2)	87(6)	86(10)	71(77)	70(7)			114(9)		
Compo (18) (19) (20) (21) (23) (23) (24) (25) (26) (27) (28) (29) (30)	$\begin{array}{c} Formula\\ C_{37}H_{48}N_{2}O_{12}\\ C_{39}H_{70}N_{2}O_{13}\\ C_{39}H_{70}N_{2}O_{13}\\ C_{39}H_{70}N_{2}O_{13}\\ C_{41}H_{72}N_{2}O_{14}\\ C_{42}H_{70}N_{2}O_{15}\\ C_{44}H_{70}N_{2}O_{15}\\ C_{44}H_{70}N_{2}O_{15}\\ C_{46}H_{70}N_{2}O_{13}\\ C_{40}H_{70}N_{2}O_{14}\\ C_{40}H_{70}N_{2}O_{14}\\ C_{46}H_{80}N_{2}O_{15}\\ C_{51}H_{74}N_{2}O_{14}\\ C_{34}H_{64}N_{2}O_{15}\\ C_{33}H_{64}N_{0}O_{15}\\ \end{array}$	bb 100(30) 100(27) 100(62) 100(28) 100(30) 100(31) 100(32) 100(32) 100(71) 100(47) 100(52) 100(50)	ff' 604(1-06) 646(1-1) 646(2-1) 6660(0-23) 716(1-2)	$\begin{array}{c} hh\\ 444(0\cdot25)\\ 444(0\cdot2)\\ 486(0\cdot2)\\ 486(0\cdot2)\\ 486(0\cdot1)\\ 486(0\cdot04)\\ 486(0\cdot4)\\ 448(0\cdot4)\\ 444(0\cdot04)\\ 500(0\cdot3)\\ 548(0\cdot1)\\ 444(0\cdot07)\end{array}$	$\begin{array}{c} {\rm ii} \\ {\rm 426(0\cdot21)} \\ {\rm 426(0\cdot2)} \\ {\rm 468(0\cdot1)} \\ {\rm 468(0\cdot08)} \\ {\rm 468(0\cdot09)} \\ {\rm 426(0\cdot12)} \\ {\rm 482(0\cdot23)} \\ \\ {\rm 530(0\cdot14)} \\ {\rm 426(0\cdot1)} \end{array}$	jj' 674(0·04) 716(0·15) 716(0·11) 800(0·26) 814(0·27) 842(0·16) 629(0·08)	$\begin{array}{c} kk' and/or ll' \\ 647(0\cdot33) \\ 689(0\cdot5) \\ 689(0\cdot55) \\ 731(0\cdot04) \\ 773(0\cdot15) \\ 787(0\cdot15) \\ 815(0\cdot1) \\ 703(0\cdot1) \\ 703(0\cdot1) \\ 815(0\cdot18) \\ 855(1\cdot5) \\ 930(0\cdot07) \\ 602(0\cdot57) \end{array}$		$\begin{array}{l} \text{Miscellaneous} \\ M = 60; \ 714(0\cdot2) \\ M = 60; \ 714(0\cdot34) \\ M = 60; \ 756(0\cdot05); \ M = 60 = 42; \ 714(0\cdot25) \\ M = 60; \ 798(0\cdot41) \\ M = 60; \ 840(0\cdot2); \ M = 60 = 42; \ 770(1\cdot0); \ M = 74; \ 798(0\cdot4) \\ M = 74; \ 774(0\cdot25) \\ M = 74; \ 770(1\cdot2) \\ M = 74; \ 770(1\cdot2) \\ M = 74; \ 826(0\cdot95) \\ M = 122; \ 818(0\cdot6) \\ M = 122; \ 818(0\cdot6) \\ M = 122; \ 912(0\cdot01); \ a'; \ 939(0\cdot07); \ c'; \ 923(0\cdot01); \ oo: \ 85(19) \\ nm'; \ 603(0\cdot27); \ nn: \ 113(8) \end{array}$					

TABLE 3

ions were of low intensity compared with o. In the case of the acetyl derivatives of the megalalosamines the location of the various acetyl groups was checked by observing the chemical shifts of these groups in the n.m.r. spectra,¹⁷ the assignments were in complete

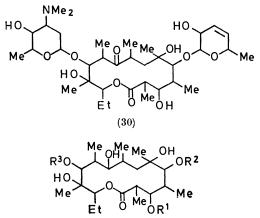


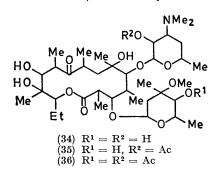
agreement. The low mass region of the spectra showed the typical fragment ions q-z, aa, and bb derived from the amino-sugar systems. As in the case of the megalomicins the fragment ff' was observed, due to the cleavage of the desosamine in derivatives where the latter was propionic, and benzoic acids from the molecular ion, as well as combinations thereof, including the loss of keten



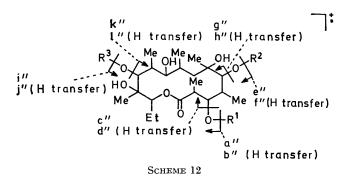
in a number of acetates, were apparent in the spectra of the acylmegalalosamines.

The mass spectrum of 2',4"-di-O-benzoyl-3-tetrahydropyranyloxymegalalosamine (29) showed a close similarity to the spectra of the megalomicins, with glycosidic cleavages of the tetrahydropyranyl group giving rise to ions a', c', and oo. The spectrum of 3'-de(dimethylamino)-3',4'-didehydromegalalosamine (30) showed the


typical glycosidic cleavages related to the rhodosamine while lacking those of the desosamine. The deaminated desosamine unit underwent glycosidic cleavages to give the ions $e', \dagger f', \dagger$ and nn, and also a retro-Diels-Alder


fission to give the fragment ion mm'. The cleavages of the aglycone of (30) produced the ions hh, ii, and jj' ll' † as expected.

The major fragment ions in the mass spectra of 9,O(9)-dihydromegalomicin A (31),¹ 9,O(9)-dihydromegalalosamine (32),¹ and 5- β -D-desosaminyloxy-9,O(9)-dihydroerythronolide $(33)^{1,18}$ are listed in Table 4. Glycosidic cleavages of the sugar residues gave rise to the ions a''-l'' as in the case of the megalomicins and megalalosamines. The base peaks were again at m/e 158, due to the amino-sugar ions m and n. As in the 9-oxo-series, the loss of 75 mass units from the rhodosamine unit gave ion o'' in the spectra of (31) and (32), and this ion fragmented further to give k'' with an


attendant loss of 99 mass units. The ion o" was not observed in the spectrum of (33) as the latter contained

- (31) $R^1 = \alpha$ -L-mycarosyl, $R^2 = \beta$ -D-desosaminyl, $R^3 = \beta$ -D-rhodosaminyl
- (32) $R^1 = H$, $R^2 = \beta$ -D-desosaminyl, $R^3 = \beta$ -D-rhodosaminyl (33) $R^1 = R^3 = H$, $R^2 = \beta$ -D-desosaminyl

no rhodosamine sugar. Fragmentation of the desosamine in (31) and (32) gave rise to the ion ff" in each case. The low-mass regions of the spectra contained peaks due

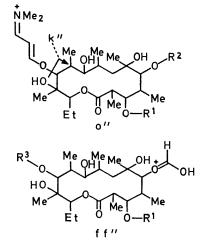
to the ions q—bb, formed by fragmentation of the desosamine and rhodosamine units (where the latter was present) and also, in the case of (31), the ions cc—ee produced by fragmentation of the mycarose residue. The ions analogous to hh—ii formed in the megalomicins and megalalosamines were not observed in the

 \dagger The analogous ion in which the desosamine unit has been deaminated.

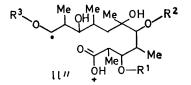
¹⁸ M. V. Sigal, P. F. Wiley, K. Gerzon, E. H. Flynn, U. C. Quarck, and O. Weaver, *J. Amer. Chem. Soc.*, 1956, **78**, 388.

TABLE 4

	9-Hydroxy-analogues												
$\begin{array}{ccc} Compd & Formula \\ (31) & C_{44}H_{62}N_2O_{15} \\ (32) & C_{37}H_{70}N_2O_{12} \\ (33) & C_{29}H_{55}NO_{10} \end{array}$	M^+ 878(0.02) 734(0.4) 577(2.6)	a'' 733(0·05)	b'' 734(0 ·1)	c'' 717(1)	d″ 718(0·05)	e'' 720(1) 576(2 · 1)	f' 721(1) 577(1·4)	g'' 704(3) 560(3·5) 403(1·0)	h" 705(2) 561(1·4) 404(0·4)	i″ 720(1) 576(2·1)	j'' 721(1) 577(1·4)		
Compd Formula (31) C ₄₄ H ₈₂ N ₂ O ₁₅ (32) C ₃₇ H ₇₀ N ₂ O ₁₂ (33) C ₂₉ H ₅₅ NO ₁₀	k″ 704(3) 560(3·5)	l'' 705(2) 561(1·4)	m 158(100) 158(100) 158(100)	n 158(100) 158(100)	o *) 803(0•1) 659(0•8)	q 174(14) 174(10) 174(31)	r 174(14) 174(10)	s and/or t 140(5) 140(3) 140(5)	u 87(27) 87(8) 87(17)	v 86(7) 86(5) 86(8)	w 71(30) 71(23) 71(26)		
Compd Formula (31) C ₄₄ H ₈₂ N ₂ O ₁₅ (32) C ₃₇ H ₇₀ N ₂ O ₁₂ (33) C ₂₉ H ₅₅ NO ₁₀	x 70(9) 70(4) 70(7)	y 98(25) 98(13) 98(24)	z 116(40) 116(23) 116(64)	aa 114(9) 114(6)	bb 100(41) 100(27)	cc 145(4)	dd 127(9)	ee 109(4)	ff'' 750(0•3) 606(3•3)	11″ 793(0•09) 649(0•8) 492(20)			

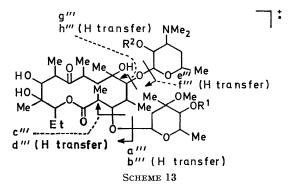

TABLE 5

Erythromycin derivatives


En y intolity on donvatives													
Compound (34) (35) (36)	Formula C ₃₇ H ₆₇ NO ₁₃ C ₃₉ H ₆₉ NO ₁₄ C ₄₁ H ₇₁ NO ₁₅	M+ 733(0•01) 775(0•02) 817(0•03)	a‴ 574(0·19) 616(0·1) 616(0·1)	b‴ 575(0-07) 617(0-03) 617(0-05)	c''' 558(0·45) 600(0·1) 600(0·3)	d‴ 559(0•13) 601(0•02) 601(0•1)	e''' 575(0·07) 617(0·04)	f''' 576(0·05) 618(0·02)	g‴ 559(0·13) 601(0·1)	h'' 560(0·05) 602(0·1)	m 158(100) 200(43) 200(46)	q 174(14) 216(1·5) 216(4)	s 140(5) 140(24) 140(19)
Compound (34) (35) 36)	Formula C37H87NO13 C29H69NO16 C41H71NO15	u 87(19) 129(3) 87(12) 129(2) 87(8)	v 86(5) 86(6) 86(5)	w 71(29) 71(47) 71(30)	x 70(4) 70(6) 70(5)	y 98(31) 98(48) 98(38)	z 116(38) 116(22) 116(14)	pp 159(27) 159(4) 201(12)	dd 127(15) 127(11) 169(3)	ee 109(6) 109(10) 109(20)	qq 715(1·5) 757(0·2) 799(1·5)	qq and aa''' 556(0·53) 598(0·05) 598(0·2)	qq and bb''' 557(0-75) 599(0-05) 599(0-3)
Compound (34) (35) (36)	Formula C37H67NO13 C39H69NO14 C41H71NO15	qq and cc''' 540(0.43) 582(0.1) 582(0.8)	qq and dd''' 541(0-23) 583(0-08) 583(0-4)	qq and ee''' 557(0.75) 557(0.02) 599(0.3)	qq and ff''' 558(0·45) 558(0·1) 600(0·3)	qq and gg''' 541(0·23) 541(0·1) 583(0·4)	qq and hh''' 542(0·11) 542(0·1) 584(0·2)	rr 269(0·4) 269(0·3) 269(0·5)	ss 251(0·7) 251(1·0) 251(2·1)	tt 657(0·26) 699(0·2) 741(0·5)	kk and/or ll‴ 648(0•05)	uu 630(0•07)	

spectra of the dihydro-series. Losses of 85 mass units from the molecular ions in the dihydro-series gave rise to ions ll'' in all instances.

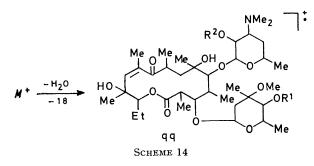
5). In comparison with the megalomicins the erythromycins showed very weak molecular ions. Glycosidic cleavages a'''---d''' of the cladinose unit were apparent in the high mass region, with the accompanying low



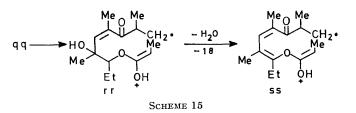
In view of the close similarity between the structures of the megalomicins and erythromycin A (34),¹⁹ the mass

spectra of the latter, and its 2''-O-acetyl (35) ²⁰ and 4', 2''-di-O-acetyl (36) derivatives ²⁰ were recorded (Table

¹⁹ P. F. Wiley, K. Gerzon, E. H. Flynn, M. V. Sigal, O. Weaver, U. C. Quarck, R. C. Chauvette, and R. Monahan, J. Amer. Chem. Soc., 1957, **79**, 6062.

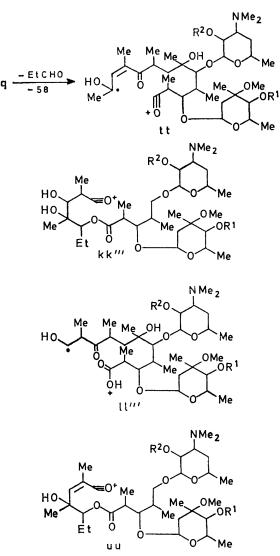


mass fragment ions pp, dd, and ee. The m/e values of the ions pp and dd demonstrated that the methoxy-group was located at C-3' and that the hydroxy-group.

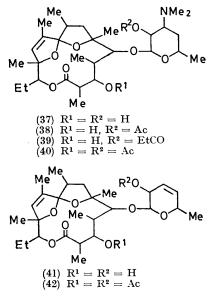


was at C-4' in the erythromycins. In the spectrum of the monoacetate (35) the positions of these ions remained unchanged, indicating that the acetyl group was not in the cladinose unit. In that of the diacetate (36), the m/e values of the ions pp and dd had increased by 42 ²⁰ A. Banaszek, J. St. Pyrek, and A. Zamojski, *Roczniki Chemii*, 1969, **43**, 763. mass units, consistent with the location of one of the acetyl groups at the 4'-position in the cladinose. The positions of the high-mass ions aa'''-dd''' also indicated the presence of acetyl substitution in the cladinose. Glycosidic cleavages of the desosamine also occurred with the erythromycins, leading to fragments e'''-h''', which again varied according to the acylation pattern in that sugar residue. In all cases the base peak in the spectrum was due to the ion m. The shift of the base peak from m/e 158 to 200 in the esters (35) and (36) indicated that the hydroxy-group in the desosamine was acetylated in those derivatives. The other low-mass fragment ions from the desosamine, namely q, s, and u-z, were also present in the spectra of the erythromycins.

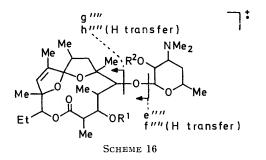
In contrast to the megalomicins, the erythromicins showed substantial loss of water from the molecular ion, apparently due to the loss of the 11-hydroxy-group to give the ion qq. This loss cannot occur in the megalomicins owing to the presence of the 11- β -D-rhodosaminyloxy-group. Further glycosidic cleavages from the ion

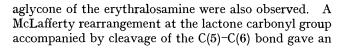


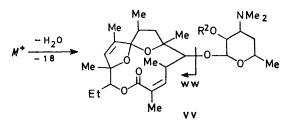
qq by fragmentations of the type a'''—hh''' were also observed in the erythromycins. The fragment qq also underwent a McLafferty rearrangement at the lactone carbonyl group, accompanied by cleavage between C-6 and C-7 to give the ion rr, which underwent a further loss of water to give the fragment ion ss. The formation of the ions rr and ss in the erythromycins is analogous to



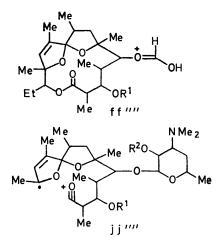
the formation of the ions hh and ii in the megalomicins. The loss of propionaldehyde from the ions qq also occurred in the erythromycins to give the ion tt. In the case of erythromycin A (34), a loss of 85 mass units from the molecular ion leading to fragments kk''' and ll''', as well as a loss of 85 mass units from ion qq leading to ion uu, was observed.


In the course of the degradation of the megalomicins, a number of erythralosamines $(37)-(42)^{19}$ were prepared; the mass spectral data for these compounds are




given in Table 6. The glycosidic cleavages $e^{\prime\prime\prime\prime}$ —h $^{\prime\prime\prime\prime}$ of the desosamine unit were observed with the expected

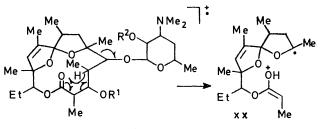
shifts depending on the acylation of the 2'-hydroxygroup, leading to a base peak in all cases due to the ion

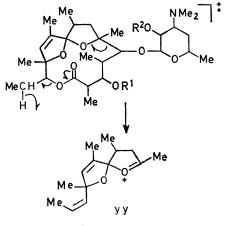

m. The low mass fragment ions q, s, and u—z from the desosamine were also observed. The mass spectrum of

ion xx at m/e 295 (Scheme 17) and an ion yy at m/e 221 (Scheme 18). A fragment common to all of the ery-

	The erythralosamines													
Compound (37) (38)	Formula C ₂₉ H ₄₉ NO ₈ C ₃₁ H ₅₁ NO ₉	$M^+ \ 539(3\cdot4) \ 581(0\cdot26)$	e'''' 381(2·9) 381(0·59)	f'''' 382(1) 382(0·15)	g'''' 365(3) 365(0•43)	h'''' 366(0·8) 366(0·11)	m 158(100) 200(52)	q 174(11) 216(1)	s 140(22) 140(8)	u 87(11) 129(5)	v 86(3) 86(6)	w 71(11) 71(100)	x 70(3) 70(8)	
(39)	$C_{32}H_{53}NO_8$	595(1.2)	381(3)	582(0·8)	365(2.4)	366(0.7)	214(100)	230(2.5)	140(23)	87(12) 143(4) 87(11)	86(5)	71(44)	70(6)	
(4 0)	$C_{33}H_{53}NO_{10}$	623(0.3)	$423(2 \cdot 1)$	424(0.6)	4 07(2·1)	408(0.6)	200(98)	216(1)	140(11)	129(3) 87(7)	86(6)	71(21)	70(5)	
(41) (42)	C ₂₇ H ₄₂ O ₈ C ₃₁ H ₄₆ O ₁₀	$494(1\cdot5)$ 578($1\cdot73$)	381(8) 423(12)	$382(2\cdot 5)$ 424(3·3)	365(0•8) 407(0•6)	366(0.2) 408(0.2)				.,				
Compound	Formula	у	z	ff''''	jj‴″	vv	ww	XX	y .y	ZZ	Miscellaneous			
(37) (38) (39) (40) (41) (42)	$\begin{array}{c} C_{29}H_{49}NO_8\\ C_{31}H_{51}NO_9\\ C_{22}H_{53}NO_9\\ C_{33}H_{53}NO_{10}\\ C_{27}H_{42}O_8\\ C_{31}H_{48}O_{10} \end{array}$	98(18) 98(24) 98(47) 98(30)	116(18) 116(9) 116(22) 116(39)	411(0· 1)	$\begin{array}{c} 481(2\cdot3)\\ 523(0\cdot09)\\ 537(0\cdot4)\\ 565(0\cdot4)\\ 436(0\cdot9)\\ 520(1\cdot2) \end{array}$	521(0·7) 563(0·03) 577(0·1) 476(0·4)	$\begin{array}{c} 347(0\cdot7)\\ 547(0\cdot13)\\ 347(0\cdot8)\\ 347(0\cdot8)\\ 347(0\cdot8)\\ 347(0\cdot8)\\ 347(0\cdot5)\end{array}$	$\begin{array}{c} 295(0{\cdot}5)\\ 295(0{\cdot}19)\\ 295(1)\\ 295(1{\cdot}2)\\ 295(1{\cdot}2)\\ 295(0{\cdot}2) \end{array}$	$\begin{array}{c} 221(3)\\ 221(2)\\ 221(4)\\ 221(4)\\ 221(4)\\ 221(9)\\ 221(13) \end{array}$	$\begin{array}{c} 123(29)\\ 123(24)\\ 123(59)\\ 123(24)\\ 123(24)\\ 123(89)\\ 123(43)\end{array}$	M = 60; 521(0.03) M = 74; 521(0.3) M = 60; 563(0.3) nn: 113(27) nn: 113(29) and 155(100)			

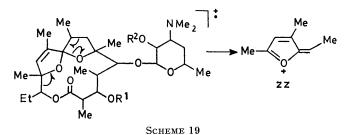
TABLE 6


erythralosamine (37) showed a fragment ion ff'''' formed by the loss of 128 mass units from the molecular ion. As in the case of the megalomicins and megalalosamines, this fragmentation was not observed when the desosamine was acylated. The erythalosamines exhibited a loss of propionaldehyde from the molecular ion giving rise to the ions jj''''. A loss of water from the molecular


ion to give the ions vv was observed in those erythralosamines where the 3-hydroxy-group was not acylated. Loss of the desosamine and a water molecule from the molecular ion gave rise to the ions ww.

A number of characteristic fragmentations of the

thralosamines at m/e 123 is thought to be due to the ion zz (Scheme 19).



SCHEME 17

SCHEME 18

The deaminated erythralosamine derivatives (41) and (42) showed glycosidic cleavage fragments in the highmass region similar to those observed with erythralosamine (37), and gave rise to ions nn in the low-mass

region. The deaminated erythralosamines (41) and (42) did not lose 128 mass units to give the ions ff'''', further supporting the fact that the latter fragmentation

involved loss of a fragment which included the aminogroup of the desosamine.

EXPERIMENTAL

Low resolution spectra were run at 70 eV on a Perkin-Elmer RMU-6D spectrometer, or on an Atlas CH5 spectrometer. High resolution spectra were run on an A.E.I. MS902B spectrometer, or a JEOL JMS-01SC spectrometer at 70 eV. Metastable peaks were observed at 10 eV.

We thank the Morgan-Schaffer Corporation, Montreal, Canada, for the majority of the mass spectra, and the Sadtler Research Laboratories, Philadelphia, and JEOLCO (U.S.A.) Inc., for the high resolution mass measurements. We also thank J. McGlotten of this Corporation for the remaining spectra.

[2/1700 Received, 18th July, 1972]